

Tetrahedron Letters 42 (2001) 1547-1549

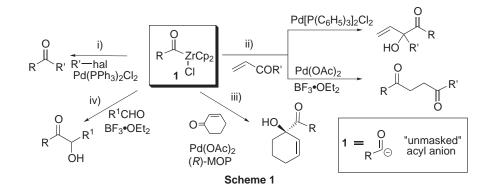
TETRAHEDRON LETTERS

Yb(OTf)₃-TMSOTf-catalyzed reactions of acylzirconocene chloride to imines

Akito Kakuuchi, Takeo Taguchi* and Yuji Hanzawa*

School of Pharmacy, Tokyo University of Pharmacy & Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan Received 9 November 2000; revised 7 December 2000; accepted 8 December 2000

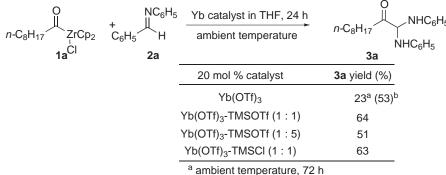
Abstract—Direct access of α -amino ketone derivatives through reactions of acylzirconocene chlorides with derivatives of *N*-benzylideneaniline, in which acylzirconocene chlorides react as an 'unmasked' acyl anion donor, was carried out for the first time under Yb(OTf)₃–TMSOTf-catalyzed conditions. © 2001 Elsevier Science Ltd. All rights reserved.


Our recent studies on the reactivity of easily accessible and stable acylzirconocene chloride derivatives 1^1 have opened up the possibility of their use as a donor of 'unmasked' acyl anion in organic syntheses. In these studies, we indicated (i) Pd-catalyzed coupling reactions with organic halides,² (ii) Pd-catalyzed regiochemically adjustable nucleophilic acylation of α,β -enones,³ (iii) Pd(OAc)₂-(*R*)-MOP-catalyzed enantioselective 1,2additions to α,β -enone derivatives⁴ and (iv) Lewis acidmediated reactions with aldehydes⁵ (Scheme 1).

An extension of the strategy to imine derivatives **2** would be expected to yield α -amino ketone compounds **3** (Eq. (1)), which constitute a variety of biologically important molecules.⁶ To the best of our knowledge, however, there is no precedent of the direct access to

the α -amino ketone compounds through an addition of the 'unmasked' acyl group to imine derivatives.

$$R \xrightarrow{C}_{Cl} ZrCp_{2} + R^{1} \xrightarrow{R}_{H} + R^{1} \xrightarrow{R}_{NHR^{2}} (1)$$


In this paper, we describe the formation of α -amino ketones **3** through Yb(OTf)₃-TMSOTf-catalyzed reactions of acylzirconocene chloride **1** to derivatives of imine **2**. Attempted reactions of *N*-benzylideneanilines (**2a**) with nonanoylzirconocene chloride (**1a**) in the presence of a stoichiometric amount of a Lewis acid, such as BF₃·OEt₂, TiCl₄, TMSOTf, AlCl₃, etc., failed to yield α -amino ketones. Recent disclosure⁷ on the catalytic

Scheme 1.

Keywords: acylzirconocene chloride; Yb(OTf)₃-TMSOTf-catalyst; acyl anion; imine derivatives.

^{*} Corresponding authors. Tel.: +00 81 426 76 3274; fax: +00 81 426 76 3257; e-mail: hanzaway@ps.toyaku.ac.jp

^b 50 °C, 8 h.

Scheme 2.

activity of transition metal complexes in the carbon-carbon bond forming reactions of imine derivatives suggested to us the use of ytterbium triflate [Yb(OTf)₃] as a Lewis acid in our attempted reactions. To our delight, in the presence of $Yb(OTf)_3$ (20 mol%), the reaction of 2a with 1a (1.3 equiv.) at ambient temperature in THF proceeded slowly (72 h, by TLC) to give **3a** in 23% yield. By heating the reaction mixture at 50°C for 8 h 3a was obtained in 53% yield (Scheme 2). However, under the heating conditions, a longer reaction period (>8 h) tends to yield a contaminated reaction mixture (by TLC). Recently, the use of Yb(OTf)₃-TMSOTf in a 1:1 ratio has been reported to be an efficient catalyst for the ene-reactions of imine derivatives.⁸ The application of the catalytic system (20 mol%, Yb(OTf)₃-TMSOTf, 1:1) in THF to our reaction indicated that the reaction of 1a with 2a proceeded at ambient temperature for 24 h to give 3a in 64% yield. The use of a smaller amount of the catalyst (10 mol%) lowered the yield of **3a** (42%). Thus, the $Yb(OTf)_{3}$ -TMSOTf (20 mol%, 1:1) system is preferable to the single-handed use of Yb(OTf)₃ as a catalytic system in the present reaction. A higher ratio of TMSOTf to $Yb(OTf)_3$ (5:1) turned out to be less efficient. The use of TMSCI as a substitute for TMSOTf gave 3a in a comparable yield (63%).

The possibility of the intervention of TfOH as a catalyst, which might be generated by the hydrolysis of TMSOTf with a trace of water in the reaction media, was also examined.8 Thus, an addition of TfOH (20 mol%) to a mixture of 1a and 2a at 0°C yielded a reaction mixture containing 3a (10-20% by NMR).9 The use of scandium triflate $[Sc(OTf)_3]$ in place of $Yb(OTf)_3$ as a catalyst showed similar efficiency to that of Yb(OTf)₃. It turned out that, in the present Yb(OTf)₃-TMSOTf-catalyzed reactions, the employed solvent, THF, is crucial to bring about the reaction since the use of a solvent other than THF, such as CH₂Cl₂, CH₃CN, DMF or DME, retards the reaction (CH_2Cl_2, CH_3CN) or renders it complex (DMF or DME) (by TLC). Thus, we believe that the $Yb(OTf)_{3-}$ TMSOTf (20 mol%, 1:1) in THF is the catalyst of choice in our present reactions.

Results of the Yb(OTf)₃-TMSOTf (20 mol%, 1:1)-catalyzed reactions of imine derivatives **2** with acylzirconocene chloride 1 in THF are listed in Table 1. The reactions proceed to give 3 in moderate yields (entries 1–9). The *para*-substituent on benzylidene portion did not show a notable effect on the reaction (entries 1–3). However, the reaction of *N*-2-methoxybenzylideneaniline (**2b**) gave a lower yield of 3 (37%) compared to *para*-isomer (entries 3 and 4).¹⁰ The present reaction of 1 is restricted to derivatives of *N*-benzylideneaniline since imine derivatives derived from pivalaldehyde or cyclohexanecarbaldehyde with aniline reacted with **1a** to give products in less than 10% yields, respectively.¹¹

In summary, we have indicated for the first time the nucleophilic additions of an 'unmasked' acyl anion to substituted *N*-benzylideneaniline derivatives. Although the reactivity of acylzirconocene chloride toward imine derivatives under Yb(OTf)₃–TMSOTf (20 mol%, 1:1)-catalyzed conditions was not necessarily high enough, the present results show a direct access to α -amino ketone derivatives and the further utility of the acylzirconocene chloride as an 'unmasked' acyl anion donor in organic synthesis.

Table 1. $Yb(OTf)_3$ -TMSOTf-catalyzed addition reactions of acylzirconocene chlorides 1 to 2

Entry	1 R	2 R ¹	R ²	3 Yield ^a (%)
1	<i>п-</i> С ₈ Н ₁₇ 1а	C_6H_5	C ₆ H ₅ 2a	64 3a
2		p-CF ₃ C ₆ H ₄	C_6H_5	54
3		p-CH ₃ OC ₆ H ₄	C_6H_5	65
4		o-CH ₃ OC ₆ H ₄	C ₆ H ₅ 2b	37
5		1-Naphthyl	C_6H_5	41
6		C_6H_5	p-CF ₃ C ₆ H ₄	51
7		C_6H_5	<i>p-</i> F-C ₆ H ₄	55
8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2a		59
9	t-Bu			41

^alsolated yield.

Experimental procedure

Preparation of a THF solution of **1a**: A suspension of $Cp_2Zr(H)Cl$ (1.3 equiv.) and 1-octene (2.6 equiv.) in CH_2Cl_2 (4 mL) was stirred at ambient temperature for 0.5 h and the mixture was treated with carbon monoxide for 2 h (a CO balloon). After CH_2Cl_2 was evaporated in vacuo, THF (6 mL) was added to the residue.

Preparation of **3a**: To a solution of **1a** (1.3 equiv.) in THF (6 mL) was added a solution of **2a** (1 equiv.), Yb(OTf)₃ and TMSOTf (20 mol%, respectively) in THF (3 mL) at 0°C and the mixture was stirred at ambient temperature for 24 h. The reaction mixture was treated with satd aq. NaHCO₃ and extracted with ethyl acetate. After the usual workup, **3a** was purified by silica gel column chromatography (hexanes:ethyl acetate=80:1) to give **3a** in 64% yield.

References

- 1. Bertelo, C. A.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 228.
- (a) Hanzawa, Y.; Tabuchi, N.; Taguchi, T. *Tetrahedron* Lett. 1998, 39, 6249; (b) see also: Cu(I)-catalyzed coupling reactions of acylzirconocene halides with allylic halides; Hanzawa, Y.; Narita, K.; Taguchi, T. *Tetrahedron Lett.* 2000, 41, 109.

- Hanzawa, Y.; Tabuchi, N.; Taguchi, T. *Tetrahedron Lett.* 1998, 39, 8141.
- Hanzawa, Y.; Tabuchi, N.; Saito, K.; Noguchi, S.; Taguchi, T. Angew. Chem., Int. Ed. Engl. 1999, 38, 2395.
- 5. Harada, S.; Taguchi, T.; Tabuchi, N.; Narita, K.; Hanzawa, Y. Angew. Chem., Int. Ed. Engl. 1998, 37, 1696.
- Buckley, III, T. F.; Rapoport, H. J. Am. Chem. Soc. 1981, 103, 6157.
- (a) Kobayashi, S.; Ishitani, H. *Chem. Rev.* **1999**, *99*, 1069;
 (b) Kobayashi, S.; Araki, M.; Ishitani, H.; Nagayama, S.; Hachiya, I. *Synlett* **1995**, 233.
- Yamanaka, M.; Nishida, A.; Nakagawa, M. Org. Lett. 2000, 2, 159.
- 9. The presence of 3a was confirmed by the NMR analysis of the reaction mixture. This surprising result prompted us to examine the Brønsted acid as a promoter for the present reactions, and we found that Brønsted acids, such as 2,4-dinitrophenol, hydrochloric acid and HClO₄, are excellent promoters. The results will be published in due course.
- 10. N-Benzylidene-4-methoxyaniline gave a product in poor yield (27%). We have also examined the reaction of α , β -unsaturated acylzirconocene chloride with **2a**. However, the yield of the corresponding α -amino ketone was very low (12%).
- 11. Formations of the products, which correspond to **3**, were confirmed by NMR spectra of the isolated products. We are unable to obtain the product through the reaction of *N*-benzylidenetosylamide or *N*-benzylidenebenzylamine with **1a**.